TD Physique Statistique n°3 - Équilibre thermique

Lorsque l'on amène deux systèmes isolés S_1 et S_2 , constitués de N_1 et N_2 particules et d'énergies E_1 et E_2 , jusqu'au contact thermique, on autorise un tranfert d'énergie entre S_1 et S_2 , sans que le nombre de particules N_1 et N_2 pour chaque système change. Le transfert d'énergie se fait de manière à maximiser le nombre d'états accessibles par le système global $S = S_1 + S_2$. Lorsque l'équilibre thermique est atteint, tous les états du système S sont accessibles avec une égale probabilité.

On considère ici deux systèmes de spins (N_1, s_1) et (N_2, s_2) que l'on met en contact thermique. Les deux systèmes sont plongés dans un champ magnétique externe B. Les spins peuvent s'orienter librement soit parallèlement au champ magnétique (\uparrow) , soit anti-parallèlement (\downarrow) . Chaque spin possède alors un moment magnétique $m = m_0$ (\uparrow) ou $m = -m_0$ (\downarrow) . Le champ magnétique n'est ici introduit que pour définir l'énergie U = -mB de chaque spin. On suppose qu'il n'influe par sur l'orientation des spins, ce qui est évidemment faux. s_1 et s_2 désignent alors les excès de spin orientés parallèlement pour les deux systèmes. On désigne $N = N_1 + N_2$ le nombre total de spins du système constitué par les deux systèmes de spin, et $s = s_1 + s_2$ l'excès total de spin de ce système.

- 1. En guise d'illustration, on considère ici le cas particulier où le nombre de particules dans chaque système est réduit : (N₁ = 2, s₁ = 2) et (N₂ = 3, s₂ = -1).
 Donner toutes les configurations possibles des spins pour \$\mathcal{S}_1\$ et \$\mathcal{S}_2\$ avant leur mise en contact thermique. Donner toutes les configurations possibles pour le système \$\mathcal{S} = \mathcal{S}_1 + \mathcal{S}_2\$ après la mise en contact thermique. Quelle condition la conservation de l'énergie imposet-elle aux valeurs possibles de \$s_1\$ et \$s_2\$ après la mise en contact thermique?
 Quel est la multiplicité de l'état caractérisé par \$s_1 = 2\$ et \$s_2 = -1\$, après le contact thermique? Quel est le nouvel état du système (s'_1, s'_2) pour lequel la multiplicité est maximisée? Que peut-on dire sur le transfert thermique entre \$\mathcal{S}_1\$ et \$\mathcal{S}_2\$.
- A partir de maintenant, on considère que N₁ et N₂ sont très grands et que s₁ et s₂ sont quelconques.
 Rappeler les expressions de la multiplicité des états pour les systèmes S₁ et S₂, g₁ = g (N₁, s₁) et g₂ = g (N₂, s₂).
- 3. Lorsque l'excès de spin s_1 est fixé, le produit $g_1 \cdot g_2$ est le nombre d'états accessibles au système combiné \mathcal{S} .

 Quelle condition la conservation de l'énergie impose-t-elle à s_2 après la mise en contact
 - Quelle condition la conservation de l'énergie impose-t-elle à s_2 après la mise en contact thermique? Écrire explicitement $g_1 \cdot g_2$, en fonction de s_1 , s, N_1 et N_2 .
- 4. L'état le plus probable du système combiné S est celui qui a la multiplicité la plus élevée, c'est-à-dire celui qui maximise $g_1 \cdot g_2$. Pour le trouver, il faut trouver les zéros de la dérivée de $g_1 \cdot g_2$ par rapport à s_1 . Il est cependant plus pratique de travailler avec $\ln(g_1 \cdot g_2)$.

- Montrer que, pour toute fonction f de x, si $\ln [f(x)]$ présente un maximum, il en est de même pour f(x).
- 5. Utiliser le résultat précédent pour trouver la valeur $\hat{s_1}$ de s_1 qui maximise $g_1 \cdot g_2$.

 $g_1 \cdot g_2$ en fonction de δ .

- 6. Calculer alors la valeur $(g_1 \cdot g_2)^{\max}$ prise par $g_1 \cdot g_2$ lorsque $s_1 = \widehat{s_1}$ et l'exprimer en fonction de s et de N. Commenter cette expression.
- 7. La question est maintenant de connaître l'évolution de $g_1 \cdot g_2$ au voisinage de $(g_1 \cdot g_2)^{\max}$. Pour cela, on écrit s_1 comme $s_1 = \widehat{s_1} + \delta$. Exprimer alors $g_1 \cdot g_2$ en fonction de $(g_1 \cdot g_2)^{\max}$ et de δ . Commenter la dépendance de