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LETTERS TO THE EDITOR

AES AND LEED STUDIES OF XENON ADSORPTION ON (100)NaCl

Received 2 June 1976; manuscript received in final form 12 July 1976

LEED and THEED analyses of rare gases adsorption on metals [1--7] and on
graphite [8—12] show that the first adsorbed monolayer is epitaxially related to the
substrate. It is out of registry (non-localized) for most metals, or in registry (local-
ized) for xenon on copper (111) [4], krypton on graphite (0001) [10], or either,
depending on pressure and temperature for xenon on graphite (0001) [11].

We report here the first results on the adsorption of a rare gas {xenon) on an
alkali halide (NaCl(100)) by AES and LEED, in the same way as Suzanne et al.
[8,9], in order to understand the mechanism of condensation of a non-polar ad-
sorbate on an ionic adsorbent. This system has been first investigated by Ross and
Clark [13] by a volumetric method. These authors measured three adsorption iso-
therms near the two-dimensional critical temperature (~104 K).

Our crystal is air cleaved in the (100) direction, and then heated to 200°C in
ultra high vacuum during one hour in order to desorb water. This temperature is suf-
ficiently low to prevent crystal evaporation. The topography of the air cleaved sur-
faces has been studied by the well known decoration technique in a transmission
electron microscope. They show large flat regions separated by a few steps [14,15].

AES analysis of the clean crystal surface, at 60 K, with a primary electronic
beam energy of 2.5 keV and 1.5 pA target current, does not show any surface
destruction, in agreement with Bandet et al. [16] observation. Only traces of
carbon and oxygen can be detected on the crystal surface. We measure the adsorp-
tion isotherm by AES and find a reversible and reproducible condensation of xenon
atoms on this face; the time necessary to reach the equilibrium at low temperature
and pressure is about 2 h as reported by Ross and Clark [13], which means that the
sticking coefficient is very low. A stepwise isotherm is shown on fig. 1: it is typical
of a two-dimensional phase transition gas = solid.

The LEED observation of the two-dimensional solid xenon (6 = 1) leads to a dif-
fraction pattern (fig. 2) with a twelve-fold symmetry (this fact has also been observ-
ed for xenon on (1 X 1)Ir(100) substrate [3]); this pattern is obtained with an
electron energy of 75 eV to prevent surface charging during the experiment.

Such a LEED pattern symmetry means [3] that there are two orthogonal, ap-
proximatively equally populated, pseudo-hexagonal domains of xenon in epitaxy
on the (100)NaCl substrate (fig. 3). A real space representation of one of these
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Fig. 1. Isotherm at 60 K of xenon on (100) NaCl. The pressure, given by a Varian jonization
gauge, is corrected by the ionization constant of xenon. ¢ is the coverage (0 = 1 corresponds to
55 x 16'% atoms cm™, obtained by LEED interpretation, figs. 3 and 4). AN(E)/dE is the
peak-to-peak height of xenon transition at 40 eV.

Fig. 2. Diffraction pattern of a xenon monolayer on (100)NaCl at 60 K and 1.1 X 107 Torr;
the incident energy is 75 eV.
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Fig. 3. Interpretation of the diffraction pattern: (o) substrate spots; () first pseudo hexagonal
xenon domain spots; (2) second pseudo hexagonal xenon domain spots.

domains is given on fig. 4. Xenon atoms are non-localized with respect to the four-

fold symmetry sites. The overlayer is one-dimensionally ordered in the [010]
direction. Fig. 2 shows that the reciprocal lattice parameter a;e, of xenon, is ap-

proximately equal to a, the reciprocal lattice parameter of the unit cell of (100)
NaCl. Since the substrate is an fcc crystal, one has

a:= 1/ag, 1)

where g, is the lattice parameter of NaCl. Besides, the adsorbed xenon unit cell is
hexagonal and

a;e = 2/axe\/3_ , 2)

where a,, is the crystal lattice parameter of the xenon monolayer.
Combining (1) and (2) gives:

Aye = 2a/\/3
Taking a lattice parameter of 3.98 A for the unit cell of the NaCl(100) plane, we
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